
SANS Institute
Information Security Reading Room

Securing Server Side Java

William Rushmore

Copyright SANS Institute 2019. Author Retains Full Rights.

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express
written permission.

http://www.sans.org/info/36909
http://www.sans.org/info/36914

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

William Rushmore
GIAC Security Essentials
Assignment Version 1.4b/Option 1

Securing Server Side Java

Introduction

 The Java platform began as applets running in client’s web browsers and
promised to change the Internet. Java captured the interests of many in the
computer industry for its ability to “write once, run anywhere.” The reality of the
“Write once, run anywhere” marketing slogan did not quite live up to the hype.
Although Java was and still is a good solution for cross platform client
applications, it did not revolutionize client side applications over the Internet.
However, one place that Java has made great strides has been with server side
applications. This began when Sun Microsystems released the Java Servlet
specification. Java Servlets became popular as a more secure and robust
alternative to CGI. Since then, Sun has released Java 2, Enterprise Edition
(J2EE) that is a specification for an enterprise-class server-centric Java platform.
This document intends to provide methods and best practices to secure Server
Side Java on the J2EE platform.

The Java Platform

 In the early days of Java several flaws affecting security were discovered
in the design and with some of the implementations of the Java Virtual Machine
Specifications. The good news is that none of these previous issues can be
exploited with server side Java. Java has many security features built in that
were needed for Java Applets to protect clients from malicious programmers, one
example being the “sandbox” that the Java Virtual Machine utilizes. These
feature that provided security to protect users from code downloaded off the
Internet can help make server side Java more secure. Java code executed on
the Java Virtual machine is different from a typical “C” application running on top
of the machine’s operating system. Java code running in the virtual machine is
restricted from accessing resources on the machine outside of the Sandbox as
the file system or network resources can only be accessed if explicit permission
is given. The buffer overflow is one of the most exploited security flaws of
networked applications. The design of the Java Virtual Machine is theoretically
immune to such an attack. The Java platform has also benefited from not having
a famous and widespread exploit publicized widely. Because of this, some
server side Java programmers think that these built in protections are adequate
for securing their applications. Nothing could be further from the truth. These
protections can only be considered one layer of the security onion.
 The Java platform has made it very easy to write networked applications.
Because of this, Java has become popular for building dynamic Internet sites and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

for enterprise’s critical distributed applications, increasing the importance of
securing server side Java.

Infrastructure

 Before one even considers securing server Java applications, the
infrastructure that the applications will run on top of must be secure. Without
adequate security for the network and the server themselves the efforts to secure
Java applications could be circumvented. Securing the server and the network
is beyond the scope of this document. Refer to the appropriate documents on
secure the operating system and network architecture.

Setting up Java application servers for Internet clients requires more
attention than for an intranet client when building the infrastructure. Almost
without exception Internet clients interact with server side Java through a web
server, whether it is from a web browser or through a Web Service. Refer to
appropriate documents for securing your chosen web server.

Operating Systems

 The Java Application server process should only be given rights to what
the application is required. Do not run the Java processes as “root”,
“Administrator”, or any kind of super user. This is particularly important for file
system permissions since this is the most common way Java developers will
interact directly with the operating system. (Not a good practice to do this
however, see below.)

Some operating systems provide a Java Virtual Machine (JVM) with the
operating system. Even most versions of Microsoft Windows have a JVM built in.
The operating system patches would normally provide security updates for the
JVM. Be aware of this when testing operating system patches if the built in JVM
is used.

Application Servers

 More than likely, a server side Java application would be deployed to
either a commercial or open source application server. Examples would be
Servlet engines like Tomcat or JRun and EJB containers like JBoss. Or large
commercial applications servers with several components including EJB
containers and Servlet engines: Web Logic, Web Sphere, and Sun One.
Application servers are the implementation of the J2EE specification. J2EE
application servers typically are the middle tier between the web server or client
and the database. Functionality varies between application servers but they
typically provide Servlet/Java Server Pages (JSP) and Enterprise Java Bean
(EJB) containers. Servlets and JSP’s are dynamically built web pages, similar in
functionality to CGI. Servlets/JSP’s are a more secure alternative than CGI since
they run on top of the managed Java platform. EJB’s are distributed objects,
similar to CORBA. The EJB specification has some interesting requirements that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

aid in creating secure applications. For example, EJB objects may not use file IO
and may not start new threads. With extensions such as JAAS (see below)
writing more secure applications is even easier.

From a security prospective, the application server should be viewed as
one would view an operating system. It is the platform on which your
applications will run on top of. Often when selecting an application server price,
performance, and ease of use are big but also keep security in mind. Check to
see how the vendor or, in the case of open source, the development group has
dealt with past security flaws. The typical security web sites are a good start.
“The Server Side”, www.theserverside.com, is an excellent source for J2EE
specific security issues.

Once an application server is chosen and deployed, it must be kept up to
date, just like an operating system. Java application servers are not as mature
as operating systems so it even more important to test any patches before
deploying the patch to a production environment. This author has experienced
problems deploying a patch to fix a critical security flaw on a particular
commercial application server/web server. The problem occurred when a web
client would make ten invalid requests in a short period of time the application
server would crash. When this was discovered on a production E-Commerce
site, a patch was already available from the vendor and was deployed to the
production site right away. However, after some time it was discovered that the
patched introduced a bug the broke the functionality of the site for some
customers. It took two more patch later until it fixed the fatal security flaw and did
not break the website functionality. By this time, the team learned to thoroughly
test the patch before deploying to the live site.

Databases

 Typically an application server will need to have to access to a dedicated
database server. Database access is through an implementation of the Java
Database Connectivity API or JDBC. Just like application servers, vendors have
their own implementation of the JDBC specification. These JDBC drivers have
varying levels of security. Choose a JDBC driver from a trusted vendor and one
that provides the security features required by local policy and application
requirements.
 Avoid allowing clients to connect directly to the database. A proxy on the
application server should make connections rather than allowing the client to
manage database connections. An object on the applications server typically
abstracts this, a typical use of an EJB. Along with performance benefits there
are also several security issues this addresses. First, it simplifies authentication.
Only one “client”, the application server, to the database has to be created and
maintained. Second, if only the designated application servers are permitted to
connect to the database then network layer can be secured by using such things
as trusted hosts or private switched networks, further increasing security. Where
this breaks down is when an audit trail is needed on elements of data of what
specific user made modifications. Some database vendors provide mechanisms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

pass in a user connection though the application servers connection. The user’s
connection is “tunneled” through the application server’s connection, so to speak.

Ideally, when data is passed via JDBC from the database to the
application the network should be secured to prevent an unauthorized individual
from snooping this data, i.e. switched subnet. However, in some situations this is
not possible, such as over the Internet. But the risk involved with the disclosure
of sensitive may also require additional security even if both the Java application
and database are located behind a common firewall on a switched network. In
these cases choose a JDBC driver with encryption capabilities. These JDBC
drivers will encrypt and data calls, logons, etc. between the application server
and the database. If a JDBC call for some reason must be over the Internet then
an encrypted driver should always be used. Keep in mind that there will be a
performance penalty when encryption and plan for scaling accordingly.

A properly setup database schema is essential. Since users are not
directly connecting to the database, sometimes schema security is not addressed
as seriously. The database administrator should only give permissions to the
required tables and operations needed by the application. In corporate
environments, disparate applications sometimes share the same application
server and database. As another layer of security, make sure each application
has its own connection and user name and password. Also ensure the
application user cannot read or modify data is not required.

Secure Code

 The most overlooked and by far the most difficult aspect of creating
secure Java applications is writing secure Java code. Unfortunately, it would
also be the most likely means an attacker would gain unauthorized access. In
regards to writing secure code, Java is easier than its predecessors like C and
C++ that run on “unmanaged” platforms. Unmanaged applications have almost
full access to the underlying memory and operating system. If not coded
properly memory leaks and overruns are possible. This can lead to a common
security flaw, the dreaded buffer over flow. Because Java is running inside a
managed container, a Java developer cannot write code that is vulnerable to a
buffer overflow, in theory. The only way a buffer overflow could be exploited
would be a flaw in the implementation of the virtual machine, outside of the
developer’s control. Incidentally, this is another reason why keeping up to date
with vendor patches for the application server/JVM is important. However, this
should not allow developers to be lulled into a false sense of security when
writing Java applications.
 When Java first came out, it was marketed as a platform that allowed
developers to “Write Once and Run Anywhere.” The premise was to allow code
to be executed remotely on client’s machines over the Internet. For this even to
be considered to secure it had to be implemented in a way that would prevent
malicious programmers from causing harm and stealing data from client’s
machines. Some of the security was addressed by providing “sandboxes” that
will not allow actions that where not be explicitly allowed by predefined rules.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

There are also such things as mechanisms built into the class loader that
prevents code from circumventing the sandbox. All of the following issues that
developers should be aware of for writing secure code assume that everything is
residing within the sandbox and pertaining to potential problems within the Java
Virtual Machine and not exploits of the Java Virtual Machine.
 Java is an object-oriented language. One of the fundamental principles of
an object-oriented language is to promote reusability. This means that often
programmers are writing code or objects to be used by other programmers.
Programmers should be mindful of this in design to prevent other programmers
from using their code in such a way that could cause security vulnerabilities.
 Java passes all values by reference. This is analogous in C to passing a
pointer in a method parameter. Therefore the caller of a method could change a
variable that is considered private. See code example 1. The code example is
made up of three class files. The data class, “Data”, the “TrustingProvider” which
provides public callers to the object its data object, and notice that the “EvilCaller”
class changes its local copy of the “Data” which in turn changes the
“TrustingProvider’s” local copy of the data. The sample output is as follows:

Trusting Provider's Data value is: 1
Trusting Provider's Data value is: 5

This example uses a custom built object that is mutable. But this also can

be exploited with arrays, even if the arrays contain immutable objects such as
Strings.

There are two ways this can be fixed. The first would be to change the
Data object so that it immutable. In other words only allow the “privateNumber”
to be set when the object is created but never changed during the life of the
object. In this example, Data would not have a method called “setNumber”. But
this may not be practical if the Data object had several data fields or the object
needs to be updated during its life cycle.

The second approach would be to do a “defensive copy”. This can be
done by the “TrustingProvider” returning a copy of “Data”. That way “EvilCaller”
can make all kinds of changes to its local copy of “Data” and “TrustingProvider’s”
copy will stay the same. See example 2 for the fixed code. As you can see from
example 2’s output:

Trusting Provider's Data value is: 1
Trusting Provider's Data value is: 1

 The Java World article Twelve Rules for Developing More Secure Java
Code by Gary McGraw and Edward Felton, has several rules that are particularly
important for developers writing server side Java code. The first is “Make
everything final (unless there’s a good reason not to)”. Without going into the
details object oriented principles, another aspect of Java is the ability of objects
to “extend” the functionality of other objects. Children objects also have the
ability to override or modify the parent’s functionality. A parent object can
prevent this by using the key word “final”. This can be used to prevent a class

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

from being extended or it can be used to prevent a method from being
overridden. Developers should consider using “final” on sensitive classes or
methods. This can be a delicate balancing act between writing secure code and
promoting reusability. Keep in mind future uses of the code being written and
damage that could potentially be done if a class was extended and the damage
that could be done. Some good candidates of code that should always be final
are ones that represents business logic or any custom-built security logic.
 Another rule is “Limit access to your classes, methods, and variables.”
This relates to the above secure code guidelines. The article states, “Every
class, method, and variable that is not private provides a potential entry point for
an attacker”. Notice that the “Data” class in example 1 and 2 has its variable
“private”. Only methods needed by external callers are made public and
everything else should be explicitly classified as “private”.
 Related to the above rule is Rule 4, “Don’t depend on package scope.” If
a class, method, or variable is not labeled as “public”, “private”, or “protected” it
can be accessed by any code within the same package. Most Java virtual
Machines have no mechanism to keep someone from inserting their own code
into someone else’s packages (the exception being the platform’s “java.lang”
package). The only way to prevent this on those Java Virtual Machines is
through mechanisms at deployment. If security is a concern use “private” and
don’t rely on the package scope control mechanisms, which are designed for
enforcing software-engineering principles or trust it will always be deployed
correctly.
 Rule 9 and 10 relate to dangers of serialization. Basically when an object
implements “Serializeable” it has the ability to be passed outside of the Java
Virtual Machine. Typical uses are sending Java objects to other Java platforms
over a network or saving them to files to be used later. While the serialized
object is outside of the JVM there is no control of the object. The objects non-
encrypted data can easily be read. The Twelve Rules for Developing More
Secure Java recommends avoiding serialized objects altogether. But the Sun
secure code guidelines web page has some tips for securing serialized objects.
Some important principles are to keep any handles to resources such as file
handles declared as “transient” (the transient keyword instructs the JVM not to
serialize the variable). Communications that transport serialized data should
utilize encryption.
 Java has a feature called Java Native Interface (JNI), which allows the
Java Virtual Machine to call methods on the underling operating system. Server
side Java programs will rarely ever require the use of JNI and should be avoided.
However, if JNI is used, the code called should be scrutinized for security
thoroughly. Refer to the Sun secure code guidelines in the references for things
to look for.
 A similar issue is the use of “Runtime.getRuntime().exec()” command.
This allows the Java virtual machine to fork process on the operating system.
Obviously the forked process will be outside of the controls provided by the Java
platform. With the rich API provided by the Java platform this should rarely be
needed. Avoid this when writing server side Java.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

 Direct file IO from server side applications should also be avoided. An
attacker could exploit other vulnerabilities and read data from sensitive files, such
as password files, etc. If data needs to be persisted use directory servers,
databases, or a properties file. If file IO must be used to read properties file,
ensure that JVM process has the minimum permissions necessary.
 Another aspect of the Java Platform is the concept of automatic garbage
collection. This is great from a developer’s perspective and helps avoid
problems such as memory leaks. But this means that when an object is out of
scope it still exists until the garbage collection process de-allocates it. So the
object will exist in the heap potentially with its sensitive data. The object could be
around for a very long time or even never be removed. Therefore, when an
object is no longer needed and ready to be sent to the garbage collector, all
sensitive data should be cleared if possible. This makes a heap-inspection
attack more difficult to carry out.
 The Java platform has a very rich set of libraries available to programmers
and this continues to grow with every new release. Many features available can
help developers with creating secure code. The latest release of the Java API
(JDK 1.4.1 at the time of writing) contains such things as cryptography, Secure
Sockets, and mechanisms for authentication and authorization. When designing
applications the built in mechanisms should always be used before implementing
any “home grown” solutions. The Java API’s will have the scrutiny of the entire
community and will intrinsically be more secure.

One of Java’s features is the Reflection API. This API allows
programmers to view representations of classes and objects on the VM. Tool
builders use this API for things such as debuggers, class browsers, and GUI
builders. Using reflection has negative impacts on performance and security,
especially invoking methods using reflection. Business programmers writing
server side Java should never use reflection.

Secure Communication

 When clients communicate to Java Server Applications there are three
ways this is typically done. First is through HTTP. This is especially true for
Internet clients outside of the firewall. It can be a human through a web browser
or a process like a Web Service client. Typically a web server such as Apache or
IIs will provide the HTTP communications for the Java application server. Many
documents have been written on securing various web servers; refer to the
appropriate document for your web server. Obviously, these communications
that require security should utilize the popular HTTPS protocol.
 Another common method for Java clients to communicate with Java
server applications is through Java Remote Method Invocation (RMI). With RMI
it is very easy to build distributed applications but the problem is that security
such as encryption and authentication/authorization are not built into the protocol.
So any security must be custom built. RMI is the protocol used for Enterprise
Java Bean (EJB) communication. Refer to the JAAS section below on how some
EJB containers are using JAAS to address authentication/authorization issues.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

 Smaller scale server side Java applications may use lower lever socket
communication. Just like RMI, the developer must build the authentication and
authorization. However, the most recent versions of the Java platform have the
ability to use SSL to help protect against someone from “snooping” sensitive
data.

JAAS

 A relatively new technology for securing Java is the Java Authentication
and Authorization Service (JAAS). All of the other Java mechanisms where
designed to protect from malevolent programmers. JAAS is intended to provide
a mechanism for Java applications to providing authorization and authentication
with little effort on the part of application programmers. As stated above, for a
more secure application, don’t rewrite things you can use from somewhere else.
 JAAS began as an extension to the Java platform and with the release of
Java 2 Standard Edition version 1.4 JAAS became integrated into the Java
platform. JAAS is also part of J2EE 1.3. The commercial application servers are
just beginning to support JAAS and J2EE 1.3.
 JAAS uses what is called a Pluggable Authentication Module (PAM)
framework. The PAM framework has been used on other platforms such as
Solaris. Using this framework simplifies building applications because it can be
independent of authentication mechanism. As a matter of fact, the authentication
module is specified in properties files so this could be changed without modifying
the Java source code. Authentication modules exist for use against directory
servers, UNIX, Windows, and Kerberos. Applications are not limited to just using
one module. The developer must implement the appropriate authentication
modules for their environment.
 In addition to writing the authentication module, a callback handler must
be implemented. The callback handler is the mechanism passes authentication
data to the server. The good news is that there is a high level of reusability with
the authentication module and the callback handler. These pieces of code would
probably be only written once at an organization or obtained from a third party
source.
 Once the authentication module and callback handler is completed, most
of the work in utilizing JAAS is not from the application developer but from
release engineer or system administrator deploying the JAAS application. There
are a few properties files that must be configured specific to JAAS. The first and
easiest is the login configuration file. This file lists the login module or modules
to be used to authenticate users. The other file is the policy file. The policy file is
where the rules will be setup for authentication and authorization. To help build
this file a graphical policy editor is provided with the Java 1.4 SDK. Here is a
sample of what the policy file looks like:

/** Subject-Based Access Control Policy for the JAAS
Sample Application **/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

grant codebase
"file://D:/data/jaas/jaas1_0/doc/sample/sample_action.
jar",
 Principal sample.SamplePrincipal "testUser" {

 permission java.util.PropertyPermission
"java.home", "read";
 permission java.util.PropertyPermission
"user.home", "read";
 permission java.io.FilePermission "foo.txt",
"read";
};

 In conclusion, securing a server side Java application has many facets:
from securing the network and underlying servers, to writing secure code. This
compilation of guidelines should by no means be considered a comprehensive
list but summation of important points to help the give the reader a better
understanding of what is involved with securing server side Java applications.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

References:

Java: Potent Security:
http://www.eweek.com/article2/0,3959,5404,00.asp

How JAAS enables use of custom security repositories with J2EE applications:
http://www.theserverside.com/resources/article.jsp?l=Pramati-JAAS

Java Security FAQ:
 http://www.cs.princeton.edu/sip/faq/java-faq.php3

JDBC Drivers and Web Security:
http://www.ddj.com/documents/s=918/ddj9807j/9807j.htm

12 Rules of More Secure Java code:
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html

Security Code Guidelines:
http://java.sun.com/security/seccodeguide.html#gcg

Making Defensive Copies of Objects:
http://developer.java.sun.com/developer/JDCTechTips/2001/tt0904.html#tip1

Maximum Server Security:
http://www.fawcette.com/Archives/premier/mgznarch/javapro/2001/06jun01/jsw0106/js
w0106-3.asp

JAAS Overview:
http://java.sun.com/products/jaas/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

Example 1

public class Data
{
 private int privateNumber;

 public Data(){}

 public Data(int numberIn)
 {
 privateNumber = numberIn;
 }

 public int getNumber()
 {
 return privateNumber;
 }

 public void setNumber(int numberIn)
 {
 privateNumber = numberIn;
 }
}

public class TrustingProvider
{
 private static Data myData = new Data();

 public TrustingProvider()
 {
 myData.setNumber(1);
 }

 public Data getDataObject()
 {
 return myData;
 }

 public void printYourData()
 {
 System.out.println("Trusting Provider's Data value is: " +
myData.getNumber());
 }
}

public class EvilCaller
{
 public static void main(String[] args)
 {
 TrustingProvider chump = new TrustingProvider();
 chump.printYourData();
 Data localCopy = chump.getDataObject();
 localCopy.setNumber(5);
 localCopy = null;
 chump.printYourData();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

Example 2

public class Data
{
 private int privateNumber;

 public Data(){}

 public Data(int numberIn)
 {
 privateNumber = numberIn;
 }

 public int getNumber()
 {
 return privateNumber;
 }

 public void setNumber(int numberIn)
 {
 privateNumber = numberIn;
 }
}

public class TrustingProvider
{
 private static Data myData = new Data();

 public TrustingProvider()
 {
 myData.setNumber(1);
 }

 public Data getDataObject()
 {
 Data rtnValue = new Data(myData.getNumber());
 return rtnValue;
 }

 public void printYourData()
 {
 System.out.println("Trusting Provider's Data value is: " +
myData.getNumber());
 }
}

public class EvilCaller
{
 public static void main(String[] args)
 {
 TrustingProvider chump = new TrustingProvider();
 chump.printYourData();
 Data localCopy = chump.getDataObject();
 localCopy.setNumber(5);
 localCopy = null;
 chump.printYourData();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

 }
}

Last Updated: February 17th, 2019

Upcoming SANS Training
Click here to view a list of all SANS Courses

SANS New York Metro Winter 2019 Jersey City, NJUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Scottsdale 2019 Scottsdale, AZUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Secure Japan 2019 Tokyo, JP Feb 18, 2019 - Mar 02, 2019 Live Event

SANS Zurich February 2019 Zurich, CH Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Riyadh February 2019 Riyadh, SA Feb 23, 2019 - Feb 28, 2019 Live Event

SANS Reno Tahoe 2019 Reno, NVUS Feb 25, 2019 - Mar 02, 2019 Live Event

SANS Brussels February 2019 Brussels, BE Feb 25, 2019 - Mar 02, 2019 Live Event

Open-Source Intelligence Summit & Training 2019 Alexandria, VAUS Feb 25, 2019 - Mar 03, 2019 Live Event

SANS Baltimore Spring 2019 Baltimore, MDUS Mar 02, 2019 - Mar 09, 2019 Live Event

SANS Training at RSA Conference 2019 San Francisco, CAUS Mar 03, 2019 - Mar 04, 2019 Live Event

SANS Secure India 2019 Bangalore, IN Mar 04, 2019 - Mar 09, 2019 Live Event

SANS St. Louis 2019 St. Louis, MOUS Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Secure Singapore 2019 Singapore, SG Mar 11, 2019 - Mar 23, 2019 Live Event

SANS San Francisco Spring 2019 San Francisco, CAUS Mar 11, 2019 - Mar 16, 2019 Live Event

SANS London March 2019 London, GB Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Secure Canberra 2019 Canberra, AU Mar 18, 2019 - Mar 29, 2019 Live Event

SANS Norfolk 2019 Norfolk, VAUS Mar 18, 2019 - Mar 23, 2019 Live Event

ICS Security Summit & Training 2019 Orlando, FLUS Mar 18, 2019 - Mar 25, 2019 Live Event

SANS Munich March 2019 Munich, DE Mar 18, 2019 - Mar 23, 2019 Live Event

SANS SEC504 Paris March 2019 (in French) Paris, FR Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Jeddah March 2019 Jeddah, SA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS Doha March 2019 Doha, QA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS SEC560 Paris March 2019 (in French) Paris, FR Mar 25, 2019 - Mar 30, 2019 Live Event

SANS Madrid March 2019 Madrid, ES Mar 25, 2019 - Mar 30, 2019 Live Event

SANS 2019 Orlando, FLUS Apr 01, 2019 - Apr 08, 2019 Live Event

SANS Cyber Security Middle East Summit Abu Dhabi, AE Apr 04, 2019 - Apr 11, 2019 Live Event

SANS London April 2019 London, GB Apr 08, 2019 - Apr 13, 2019 Live Event

Blue Team Summit & Training 2019 Louisville, KYUS Apr 11, 2019 - Apr 18, 2019 Live Event

SANS Riyadh April 2019 Riyadh, SA Apr 13, 2019 - Apr 18, 2019 Live Event

SANS Boston Spring 2019 Boston, MAUS Apr 14, 2019 - Apr 19, 2019 Live Event

SANS Seattle Spring 2019 Seattle, WAUS Apr 14, 2019 - Apr 19, 2019 Live Event

FOR498 Battlefield Forensics Beta 1 Arlington, VAUS Apr 15, 2019 - Apr 20, 2019 Live Event

SANS Dallas 2019 OnlineTXUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Securing_Server_Side_Java+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=54415&rrpt=Securing_Server_Side_Java&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54415&rrpt=Securing_Server_Side_Java&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54420&rrpt=Securing_Server_Side_Java&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54420&rrpt=Securing_Server_Side_Java&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54425&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54425&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54935&rrpt=Securing_Server_Side_Java&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=54935&rrpt=Securing_Server_Side_Java&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=55065&rrpt=Securing_Server_Side_Java&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=55065&rrpt=Securing_Server_Side_Java&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=54430&rrpt=Securing_Server_Side_Java&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54430&rrpt=Securing_Server_Side_Java&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54960&rrpt=Securing_Server_Side_Java&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54960&rrpt=Securing_Server_Side_Java&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54490&rrpt=Securing_Server_Side_Java&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54490&rrpt=Securing_Server_Side_Java&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54435&rrpt=Securing_Server_Side_Java&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=54435&rrpt=Securing_Server_Side_Java&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=56970&rrpt=Securing_Server_Side_Java&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=56970&rrpt=Securing_Server_Side_Java&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=54440&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=54440&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=54455&rrpt=Securing_Server_Side_Java&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54455&rrpt=Securing_Server_Side_Java&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54450&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54450&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54445&rrpt=Securing_Server_Side_Java&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=54445&rrpt=Securing_Server_Side_Java&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=55020&rrpt=Securing_Server_Side_Java&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=55020&rrpt=Securing_Server_Side_Java&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=54465&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54465&rrpt=Securing_Server_Side_Java&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54460&rrpt=Securing_Server_Side_Java&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=54460&rrpt=Securing_Server_Side_Java&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=54495&rrpt=Securing_Server_Side_Java&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=54495&rrpt=Securing_Server_Side_Java&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=55075&rrpt=Securing_Server_Side_Java&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=55075&rrpt=Securing_Server_Side_Java&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=57475&rrpt=Securing_Server_Side_Java&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=57475&rrpt=Securing_Server_Side_Java&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=56030&rrpt=Securing_Server_Side_Java&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=56030&rrpt=Securing_Server_Side_Java&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=55255&rrpt=Securing_Server_Side_Java&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=55255&rrpt=Securing_Server_Side_Java&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=57540&rrpt=Securing_Server_Side_Java&rret=SANS_SEC560_Paris_March_2019_in_French
http://www.sans.org/link.php?id=57540&rrpt=Securing_Server_Side_Java&rret=SANS_SEC560_Paris_March_2019_in_French
http://www.sans.org/link.php?id=55725&rrpt=Securing_Server_Side_Java&rret=SANS_Madrid_March_2019
http://www.sans.org/link.php?id=55725&rrpt=Securing_Server_Side_Java&rret=SANS_Madrid_March_2019
http://www.sans.org/link.php?id=54470&rrpt=Securing_Server_Side_Java&rret=SANS_2019
http://www.sans.org/link.php?id=54470&rrpt=Securing_Server_Side_Java&rret=SANS_2019
http://www.sans.org/link.php?id=55945&rrpt=Securing_Server_Side_Java&rret=SANS_Cyber_Security_Middle_East_Summit
http://www.sans.org/link.php?id=55945&rrpt=Securing_Server_Side_Java&rret=SANS_Cyber_Security_Middle_East_Summit
http://www.sans.org/link.php?id=56035&rrpt=Securing_Server_Side_Java&rret=SANS_London_April_2019
http://www.sans.org/link.php?id=56035&rrpt=Securing_Server_Side_Java&rret=SANS_London_April_2019
http://www.sans.org/link.php?id=55355&rrpt=Securing_Server_Side_Java&rret=Blue_Team_Summit_Training_2019
http://www.sans.org/link.php?id=55355&rrpt=Securing_Server_Side_Java&rret=Blue_Team_Summit_Training_2019
http://www.sans.org/link.php?id=56040&rrpt=Securing_Server_Side_Java&rret=SANS_Riyadh_April_2019
http://www.sans.org/link.php?id=56040&rrpt=Securing_Server_Side_Java&rret=SANS_Riyadh_April_2019
http://www.sans.org/link.php?id=55735&rrpt=Securing_Server_Side_Java&rret=SANS_Boston_Spring_2019
http://www.sans.org/link.php?id=55735&rrpt=Securing_Server_Side_Java&rret=SANS_Boston_Spring_2019
http://www.sans.org/link.php?id=55740&rrpt=Securing_Server_Side_Java&rret=SANS_Seattle_Spring_2019
http://www.sans.org/link.php?id=55740&rrpt=Securing_Server_Side_Java&rret=SANS_Seattle_Spring_2019
http://www.sans.org/link.php?id=58405&rrpt=Securing_Server_Side_Java&rret=FOR498_Battlefield_Forensics_Beta_1
http://www.sans.org/link.php?id=58405&rrpt=Securing_Server_Side_Java&rret=FOR498_Battlefield_Forensics_Beta_1
http://www.sans.org/link.php?id=54410&rrpt=Securing_Server_Side_Java&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=54410&rrpt=Securing_Server_Side_Java&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=1032&rrpt=Securing_Server_Side_Java&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=Securing_Server_Side_Java&rret=SANS_OnDemand

