
SANS Institute
Information Security Reading Room

Analysis of a Simple HTTP Bot

Daryl Ashley

Copyright SANS Institute 2019. Author Retains Full Rights.

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express
written permission.

http://www.sans.org/info/36909
http://www.sans.org/info/36914

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot

GIAC (GREM) Gold Certification

Author:	 Daryl	 Ashley,	 ashley@infosec.utexas.edu	
Advisor:	 Pedro	 Bueno	

	

Abstract	
	
This	 paper	 describes	 how	 reverse	 engineering	 methods	 were	 used	 to	 analyze	 a	
simple	 HTTP	 Bot.	 	 The	 analysis	 focuses	 on	 some	 components	 of	 the	 HTTP	 Bot	 that	
may	 be	 present	 in	 more	 complex	 HTTP	 Bots.	 	 Therefore,	 understanding	 the	
components	 of	 this	 malware	 specimen	 may	 allow	 an	 analyst	 to	 more	 easily	
understand	 a	 more	 complex	 HTTP	 Bot.	 	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 2
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

1. Introduction
The purpose of this paper is to describe how static code analysis was used to gain

insight into the functionality of a simple HTTP Bot. Certain tools can be used to analyze

what a piece of malware has done to an infected system. For example, Regshot can be

used to determine what registry changes have been made after a malware specimen has

been executed on a test system (Zeltser, 2009b). The tcpdump command can be used to

detect network activity that occurs after the malware has been used to infect a host

(Northcutt, 2001).

However, these tools will not provide any information for the portions of the

malware that have not been executed. In order to analyze the software further, a

disassembler such as IDA Pro can be used to provide a listing of the disassembled

malware (Zeltser, 2009b). A debugger such as OllyDbg can also be used to examine and

change the runtime environment of the malware while stepping through the malware

(Zeltser, 2009b).

The name of the malware specimen analyzed in this paper is micupdate.exe. The

md5 hash of the file is dc21cf8b9a8b9573fa433d0a002d26f1. The original malware was

patched to remove the name of the command and control (C&C) website that was

encoded in the malware.

The malware was executed on a test laptop in order to observe its behavior.

Network packets were captured using tcpdump. The packet captures showed the test

laptop connecting to the same URL every 35 minutes. However, no other information

about the functionality of the malware could be determined.

IDA Pro was used to perform a static code analysis of the malware. The analysis

revealed that the malware could be used to obtain a reverse shell on the infected system.

OllyDbg was used to verify this functionality. While the malware was running in the

debugger, specific memory areas were modified to “force” the malware to execute

sections of code that were not executed during the observation phase of the analysis. The

information gained from the analysis was used to suggest several methods to detect the

malware.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 3
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

2. Malware Overview
There are three hosts involved with the micupdate malware. The first host is the

infected computer. The second host is a C&C website that hosts a web page with an

encoded command. The attacker uses the third host to obtain remote access to a

command window on the infected system.

The infected computer retrieves a web page from the C&C website, and then

decodes the command. There are two possible commands: sleep x and x.x.x.x y. When

the sleep command is received, the infected client will sleep for x minutes before

retrieving the web page again and checking for another command. When the x.x.x.x y

command is received, the infected host will initiate a TCP session to a host at IP address

x.x.x.x on port y. Once the infected host has connected to the host at IP address x.x.x.x,

the infected host waits for the remote host to send commands. If the attacker sends the

command “shell”, the infected host will create a command window. Input and output to

the command window is redirected to the remote host, so the attacker has access to a

command window on the infected system. Illustrations of these two scenarios are shown

in Figures 1 and 2.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 4
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

	
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

Figure 1: Infected host receiving a "sleep" instruction (pascallapalme 2010)

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 5
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	
	

Figure 2: Infected host receiving command to connect to attacker's computer

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 6
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

3. Observed Behavior of Malcode
The malcode was executed on a test system and observed for several hours.

Packet captures were obtained using tcpdump during this time. The packet captures

showed the infected host downloading a web page from the C&C website every 35

minutes. The packet capture also showed the infected host sending TCP resets to the

C&C website (Figure 3), and that the infected host was not downloading the entire web

page. In Figure 3, the IP address of the infected host is 192.168.124.129 and the IP

address of the C&C website is 192.168.124.128.

	
Figure 3: TCP Reset sent by infected client after downloading web page

4. Static Code Analysis
IDA Pro was used to generate a disassembly of the malware specimen. There are

four subroutines that will be the focus of the static code analysis. The subroutine located

at offset 00401A10 is responsible for the main program loop. IDA Pro has labeled this

function “WinMain” after disassembling the malware. The subroutine located at offset

004010C0 is responsible for retrieving a web page and will be referred to as “Poll_Url”.

The subroutine located at offset 00401790 is responsible for opening a TCP session to

another host. This subroutine will be referred to as “Create_Socket”. The subroutine

located at offset 00401700 is responsible for creating a “reverse shell”, allowing the

attacker to have shell access to the infected system (Hammer, 2006). This subroutine will

be referred to as “Reverse Shell”.

4.1. Reverse_Shell
The Reverse_Shell subroutine creates a command window that is accessible to the

attacker through a TCP socket. The Windows API function CreateProcess can be used to

execute a command within a newly created process (Hart 2005). The StartupInfo object

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 7
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

passed as one of the parameters to CreateProcess can be initialized so that input and

output for the newly created process are redirected (Hart 2005). The malware uses the

CreateProcessA function to execute the Windows cmd.exe command and initializes the

StartupInfo object so that input and output are redirected to the TCP socket (Figure 4).

	

Figure 4: Creating the reverse shell

IDA Pro has named the argument to this subroutine “CommandLine”. However,

the instructions at offsets 00401724 – 0040172C use this argument to set values within

the StartupInfo object. The parameter is actually a socket descriptor, and the instructions

at these offsets are used to redirect input and output for the command window to the

socket descriptor. The redirection allows the attacker to type commands and view the

command results on the remote system. The renaming and analysis that IDA Pro

performs can be tremendously helpful to the analyst, but it can also lead to some

confusion if the software is assumed to always be accurate.

The instruction at offset 00401730 moves a memory address (dword_403118) into

the EAX register. This memory address is eventually pushed onto the stack (instruction

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 8
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

at offset 00401749) and is used as the “lpCommandLine” argument of the

CreateProcessA function. The ASCII content of this memory address is “cmd”.

Therefore, when control is handed to this function, “cmd” is executed on the infected

machine and the attacker will be able to access the command window through the TCP

socket.

4.2. Create_Socket
The Create_Socket subroutine establishes a TCP session with a remote host.

Once the TCP session has been established, the infected host sends the character string

“==” and waits for the remote host to transmit data. The Windows API functions that can

be used to create a TCP socket from the client are WSAsocket and connect (Hart, 2005).

These functions are used by the malware to create the TCP socket (Figure 5).

	

	
	

Figure 5: Creating a TCP socket

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 9
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 6: cp and hostshort parameters

An IP address and a port must be assigned to a sockaddr_in structure before the

structure is passed as a parameter to the connect function (Hart 2005). The information

in the sockaddr_in structure tells the connect function what IP address and port to connect

to (Hart 2005). The disassembly lists two variables (hostshort and cp) that are probably

used to set these fields in the sockaddr_in structure. They are passed to the

Reverse_Shell subroutine on the stack (Figure 6).

	

Figure 7: Sending a command prompt and waiting for input

The Windows API functions send and recv are used to send and receive data on

the TCP socket (Hart, 2005). The instructions at offsets 00401897 – 004018C5 send the

“==” string to the remote host and wait to receive data from the socket (Figure 7). The

address of the function closesocket is moved into the ebp register, but the function is not

actually called in this code section. So, the infected client waits for data after sending

“==” to the remote host.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 10
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 8: Looking for the string "shell"

	

Figure 9: Pushing the socket descriptor onto the stack

The instruction at offset 00401912 pushes the address of a memory location

containing the string “shell” into a register (Figure 8). It looks like “shell” may be one of

the commands accepted by the malware after sending the “==” prompt. The “shell”

command will be tested when the malware is executed in a debugger.

The instructions at offsets 00401950 – 00401951 push a parameter onto the stack

and call the Reverse_Shell subroutine (Figure 9). The parameter pushed onto the stack is

the socket descriptor for the newly created TCP socket. The parameter is passed to the

Reverse_Shell subroutine so that the subroutine can redirect input and output for the

command shell it will create. Notice how IDA Pro has included the comment

“CommandLine” next to the “push” instruction. “CommandLine” was the name of the

subroutine argument that created confusion during the analysis of the Reverse_Shell

subroutine.

4.3. Poll_URL
	

	

Figure 10: InternetOpenA and InternetOpenUrlA Calls

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 11
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

The Poll_Url subroutine is responsible for retrieving a web page from the C&C

website and decoding the command embedded within the web page. The Windows API

functions InternetOpenA, InternetOpenUrlA, InternetReadFile, and InternetCloseHandle

can be used to connect to a web site and download a web page (Chand, 2000). The

malware uses the InternetOpenA and InternetOpenUrlA functions to retrieve the web

page from the C&C website (Figure 10).

The instruction at offset 00401EE pushes the address of a memory location onto

the stack. The memory location contains the string “inter easy” (Figure 10). The string is

used to set the “User Agent” HTTP header when the GET request is sent to the website.

The string may be useful for constructing an IDS signature.

	

Figure 11: Copying contents of web page to buffer

The instructions at offsets 00401116 – 0040113B use the InternetReadFile and

InternetCloseHandle functions to copy the first 1024 bytes of the web page into a

memory buffer and close the internet handle (Figure 11). Since the internet handle is

closed before reading the entire web page, this portion of the code may be responsible for

the TCP resets that were found in the packet capture during the observation of the

malware. Since only the first 1024 bytes of the web page are read, the encoded command

must be located within the first 1024 bytes of the web page.

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 12
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 12: Looking for comment character sequence

The instructions at offsets 0040144 – 00401164 look for the character string “<!--

“ at the beginning of the web page (Figure 12). This sequence of characters is used to

include a comment in a web page (Graham, 1998). The comment will not be displayed

by a web browser (Graham 1998), but will be available for the malware to inspect. The

encoded command will have the following form:

<!--command -->

The author of the malware may have written this portion of code incorrectly.

When looking for the first four characters above, a C code snippet should look like the

following:

if ((buffer[0] == ‘<’) && (buffer[1] == ‘!’) && (buffer[2] == ‘-‘) && (buffer[3] == ‘-‘)) {
 do_something();
}

However, the malware uses three “or” comparisons instead of three “and” comparisons.

The disassembly actually translates into the following code snippet:

if ((buffer[0] == ‘<’) || (buffer[1] == ‘!’) || (buffer[2] == ‘-‘) || (buffer[3] == ‘-‘)) {
 do_something();
}
	
Since the malware looks for these four characters at the very beginning of the web page,

a second piece of information is available for constructing an IDS signature.

The instructions at offsets 00401176 – 004012E2 are used to retrieve the encoded

command from the web page, decode the command, and parse the command into two

tokens. This code will not be examined in detail in this paper. However, examination of

the encoding/decoding algorithm may be helpful in constructing an IDS signature

because it may shed some light on what the encoded command may look like. For

example, it can be shown that the malware uses the Base64 algorithm to decode the

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 13
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

commands received by the C&C website. However, the malware does not use a standard

Base64 chart. Instead, it makes use of a “scrambled” chart (Ashley 2010). A script that

can be used to decode the encoded commands is provided in Appendix 2. The script can

be used to verify that the character string “2upczxAX” will be decoded by the malware

into the string “sleep ”. This information can be used to construct a more precise

signature.

	

	

Figure 13: Determining what command was received

The instructions at offsets 004012E3 – 0040133B are used to process the decoded

command (Figure 13). The cdecl calling convention uses arguments passed on the stack

as arguments to a function, and the return value is stored in the EAX register (Zeltser,

2009a). The strncmp function appears to use this calling convention. The instruction at

offset 004102EB pushes the address of the ASCII string “sleep” onto the stack and the

instruction at offset 004012F0 pushes the address of the first token of the decoded

command onto the stack. The strings are then compared using the strncmp function at

offset 004012FA. The “test” assembly language instruction at offset 00401302 is used to

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 14
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

check the return value of the strncmp function. If strncmp function set the EAX register

to 0, the compared strings are identical.

The Poll_Url subroutine also uses the EAX register to return a value to its calling

function. If the first token of the command is “sleep”, the Poll_Url subroutine will set the

EAX register to 2 at offset 00401309. When the subroutine ends, the WinMain function

will inspect the EAX register to determine how to proceed. In this case, the malware will

sleep for a while before sending another request for the web page. The instructions at

offsets 004012E3, 004012E4, and 004012F5 are responsible for translating the second

token into an integer value that will be used to determine how long the malware will

sleep.

If the first token is not “sleep”, the instruction at offset 00401304 will cause the

program to jump loc_401316. The string “http” is pushed onto the stack and compared to

the first token using by the strncmp function. However, there is no “test” instruction

following the call to strncmp. Therefore, the result of the strncmp function is not

inspected by the malware. This appears to be an obfuscation attempt. The actual form of

the command to setup a reverse shell is x.x.x.x y where x.x.x.x is the IP address of the

remote host and y is the port on the remote host to connect to. The EAX register is set to

3 if this portion of code is executed.

4.4. WinMain
The WinMain subroutine ties the other three subroutines together. The instruction

at offset 00401A4A is the beginning of a while loop. Within the while loop, the malware

retrieves a command from the C&C website using the Poll_Url subroutine. After the

Poll_Url subroutine returns, the contents of the EAX register determine how execution of

the loop proceeds.

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 15
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 14: Default sleep behavior

If the EAX register was set to 1, the instructions at offsets 00401A56 – 00401A63

are executed (Figure 14). 0x493E0 is pushed on the stack, and passed as a parameter to

the sleep function. This will cause the host to sleep for 5 minutes before calling the

Poll_Url subroutine again. This appears to be the default behavior of the malware if an

unrecognized command is received from the C&C website.

	

	

Figure15: Sleep command received from website

If the EAX register is set to 2, the instructions at offsets 00401A65 – 00401A82

are executed. A sleep interval (in minutes) retrieved by the Poll_Url subroutine is moved

into the EAX register. Since the sleep command takes its parameter in milliseconds, the

contents of EAX must be converted from minutes into milliseconds. The instructions at

offsets 00401A6F – 00401A81 perform this conversion (Figure 15).

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 16
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 16: Command to connect to remote host

If the EAX register is set to 3, the instructions at offsets 00401A8F – 00401AA8

are executed (Figure 16). The Create_Socket subroutine gets called within this segment

of code. Recall the Create_Socket subroutine takes two parameters, a port number and an

IP address. There are two calls to the push instruction before the call to the

Create_Socket subroutine. These two instructions push the IP address and the port onto

the stack.

A call to the Reverse_Shell subroutine will be made within the Create_Socket

subroutine, allowing the attacker to obtain a command shell on the infected system. Once

the attacker terminates the shell, program execution will return to the main loop, and the

malware will use the Poll_Url subroutine to attempt to retrieve another command from

the C&C website.

5. Debugger Analysis Setup
The static code analysis identified two possible types of behavior for this malware

specimen. The sleep behavior was observed while running the malware on a test laptop.

However, the reverse shell behavior was not observed. A debugger was used to verify

the reverse shell functionality of the malware.

Two virtual machines were used to analyze the malware. The first was a

Windows XP VM and the second was a RedHat Linux VM. OllyDbg was used to step

through and execute the malware on the Windows VM. Two netcat listeners were used

on the Linux VM to simulate the C&C website and the machine receiving the reverse

shell. The netcat commands are shown below:

nc –l –p 80 < web.txt

nc –l –p 8080

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 17
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

The web.txt file used to display the web page with the encoded command is

included in Appendix 1. The tcpdump command was used on the Linux VM to capture

the network traffic between the Windows XP VM and the Linux VM.

The “hosts” file on the Windows VM was modified so that web traffic to the

C&C site was redirected to the Linux VM.

6. Analysis Using OllyDbg
OllyDbg can be used to “step” through an executable and examine the contents of

CPU registers and memory at specific points during a program’s execution. The F7, F8,

and F9 keys can be used to execute the malware in different ways. The F7 key can be

used to execute a single assembler instruction. If this key is pressed on an instruction that

calls a subroutine, OllyDbg will allow the analyst to step through the instructions within

the subroutine. The F8 key can also be used to execute a single instruction. However, if

the F8 key is used to execute an instruction that calls a subroutine, the entire subroutine is

executed as if it were a single instruction. This allows the analyst to skip past a

subroutine that may be of little interest. The F9 key can be used to run the malware

without interruption (Zeltser, 2009b).

OllyDbg allows the analyst to set breakpoints, instructions where the program will

halt execution. To set a breakpoint:

1. Click on a line of code in the Disassembler region to highlight the line

2. Press the F2 key to set the breakpoint

The line of code should turn red. Once a breakpoint is set, the F9 key can be used to

start executing the malware. If no breakpoint is reached, the malware will run,

uninterrupted. But, if a breakpoint is reached, execution of the malware will stop, and the

analyst will be able to step through the malware using the F7 and F8 keys. This allows

the analyst to skip a number of assembler instructions that may be of little interest.

OllyDbg can also be used to modify the contents of CPU registers and memory,

allowing an analyst to force execution of specific code regions (Zeltser, 2009b). The

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 18
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

decoded command received from the C&C website was modified in the debugger,

forcing execution of the portion of the malware responsible for the reverse shell behavior.

After starting the two netcat listeners on the Linux VM, OllyDbg was started, and

the malware specimen was opened. A breakpoint was set at offset 00401C4B, the

instruction that calls the WinMain subroutine. The F9 key was used to execute the

program until the breakpoint was reached, and the F7 key was used to step into the

WinMain function.

	

Figure 17: Debugger display before decoding Url

	

Figure 18: Decoded Url displayed above the encoded text	

The F8 key was used to step through the code until the instruction at offset

00401A32 was reached. At this point, an encoded ASCII string was displayed to the

right of the instruction at offset 00401A2D (Figure 17). After pressing the F8 key to step

past the instruction at 00401A32, the decoded Url was displayed above the encoded text

(Figure 18). The function at offset 00401000 is responsible for decrypting the encoded

string into a Url. The domain name within this Url was entered into the “hosts” file of

the Windows VM to force web traffic to the Linux VM (Figure 19).

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 19
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	
	
Figure 19: Modified hosts file

	
	
	
	

	

Figure 20: Modifying contents of stack to bypass sleep

The F8 key was used to step through the malware until the instruction at offset

00401A4A was reached. This instruction will make a call to the sleep function, using the

parameter on the top of the stack as the number of milliseconds to sleep. The stack

region is shown in the lower right pane in OllyDbg. OllyDbg can be used to modify the

contents of a stack location by right-clicking on the stack location within the stack pane

and selecting “modify”. The top of the stack was modified so that the program would not

sleep as long (Figure 20).

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 20
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	
	
	
	
	

Figure 21: The EDX register contains address of memory buffer

The F8 key was used to step through the executable until the instruction at offset

00401A51 was reached. This instruction makes a call to the Poll_Url subroutine. The F7

key was used to step into this subroutine. After jumping into the Poll_Url subroutine, a

breakpoint was set at offset 0040112B. The instruction at this offset will use the

InternetReadFile function to copy the contents of the web page into a memory buffer.

The address of the memory buffer, 12F98C, was pushed onto the stack from the EDX

register (Figure 21).

	

	

Figure 22: Contents of memory after InternetReadFile executed

The F8 key was pressed to execute the InternetReadFile function. By right-

clicking in the stack pane and selecting “Show ASCII dump”, the contents of memory at

12F98C can be inspected more easily. The contents of the memory location matched the

contents of the web page redirected to the netcat listener on the Linux VM. Notice the

string “<!--2upczxAXhr0 -->” located at the beginning of the memory buffer (Figure 22).

The string “2upczxAXhrO” is the encoded command.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 21
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 23: sleep 35

A breakpoint was set on the instruction at offset 00401253 so that the executable

would jump past the code responsible for decoding the command. The decoded

command was written to memory at offset 12FD8C. The string “sleep 35” was found at

this memory offset (Figure 23). This provides verification of the command syntax for the

observed polling behavior.

	

	

Figure 24: Buffer contents modified to connect to Linux VM

In order to force the malware to execute the reverse shell portion of the code, the

contents of the stack were modified as shown in Figure 24. The “sleep 35” command

was replaced with the command “192.168.124.128 8080”. Note that hex character 0x20

was inserted between the IP address of the remote host (192.168.124.128) and the port to

connect to (8080). The F9 key was pressed to allow the malware to execute.

	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 22
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

	

Figure 25: Netcat Listener before TCP connection

	

Figure 26: Netcat client after infected host establishes TCP connection

	

Figure 27: Netcat client after typing “shell” at the “==” prompt

Before the malware was allowed to execute, the Linux VM appeared as shown in

Figure 25. After the malware was allowed to execute, the display changed as shown in

Figure 26. The netcat listener now displayed “==” as a prompt for the attacker to type a

command. The string “shell” was typed into the Linux VM, and a Windows command

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 23
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

shell was displayed. The attacker now had command shell access to the infected

Windows VM (Figure 27).

If the encoding/decoding algorithm is known, the string “192.168.124.128 8080”

can be encoded. The encoded string can then be placed in the comment section of the

web page on the Linux VM that is simulating the C&C web site. This will also cause the

malware to execute the reverse shell portion of the code. However, if the analyst does

not know how the malware is encoding/decoding the commands it receives, using

OllyDbg to modify the contents of the stack may be easier.

7. Detection using Snort	
Snort is an open source Intrusion Detection System that can be used to monitor

network traffic using a set of “signatures” (Scott 2004). If a network packet matching a

signature is detected, Snort will generate an alert so the host responsible for generating

the network traffic can be inspected (Scott 2004). Some of the information that was

found during the static code analysis can be used to create a Snort signature to detect

hosts infected with the micupdate malware.

During the static code analysis, it was determined that the malware sets the User

Agent portion of the HTTP to “inter easy”. When the infected host receives the web

page, the malware looks for the presence of the characters “<!--“ at the very beginning of

the web page. If the encoded command sent by the C&C website will instruct the

infected client to sleep for a number of minutes, the comment will also contain the string

“2upczxAX”. This information can be used to write a Snort signature. Snort’s “content”

keyword can be used to look for the strings “User Agent: inter easy” and “<!--

2upczxAX” within TCP packets (Scott 2004). However, these strings will be present in

different packets because one string is sent to the C&C website, and the other string is

received from the C&C website. Snort uses the “flowbits” keyword to create a signature

that will check for content matches in separate packets (Beale 2007). The two rules

below may detect the network traffic used to poll the C&C website for commands:

alert tcp $HOME_NET 1024: -> any 80 (content:”User-Agent: inter easy”;
flowbits:set,intereasy; flowbits:noalert;)

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 24
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

alert tcp any 80 -> $HOME_NET 1024: (content:”<!-- 2upczxAX”;
flowbits:isset,intereasy;)

A second signature can be written to detect the reverse shell activity. The packet

captures during the debugging analysis showed the infected host sending a TCP packet

with only 4 bytes of data to the Linux VM after the TCP socket was established. The

first two bytes of the TCP data were the “==” characters. A Snort signature using the

“offset” and “depth” keywords can be used to look for network packets with the

characters “==” at the very beginning of the payload (Scott 2004). The “dsize” keyword

can be used to instruct Snort to inspect only packets with a payload of 4 bytes (Roesch,

2010). The following Snort rule may detect the prompt that appears before the attacker

obtains the reverse shell.

alert tcp $HOME_NET 1024: -> any 80 (content:”==”; offset:0; depth:2; dsize:4;)	

8. Some non-Signature Detection Ideas 	
The static code analysis and debug analysis of the malware showed two possible

commands for this malware specimen: sleep or create a TCP socket. If the malware

receives the “sleep” command from the C&C website, it will sleep for a certain number

of minutes, then request the web page again. Therefore, it may be possible to detect this

malware by analyzing network logs for hosts that connect to websites at fairly regular

intervals.

If the attacker obtains a reverse shell, he has a great deal of flexibility in what can

be done on the infected system. The attacker can use the ftp command to download the

newest malware variants and execute the malware from the command window.

However, the attacker must do this while they have a command shell. This means that

this type of malicious activity may be detected by looking for lengthy outbound TCP

sessions, during which ftp transfers occur.

The network packet captures of the infected test laptop also revealed the strange

TCP resets that were sent by the infected client. It may also be possible to analyze

network logs for this type of activity.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 25
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

9. Conclusions 	
Analysis of this malware specimen highlights some of the advantages of static

code analysis. When the malware specimen is executed in a test laptop, the analyst is at

the mercy of the attacker when determining the functionality of the malware. The

malware responds to commands received from a C&C site. If the C&C site issues the

same command over and over again, the analyst will observe only one type of activity

from the infected system. Static code analysis allows the analyst to gain a more complete

understanding of the malware’s capabilities.

The static analysis may also help an analyst write a more precise IDS signature.

This malware specimen looks for an encoded command only at the very beginning of the

web page data. Therefore, the first Snort signature in the previous section could have

been modified to look for the “<!--“ content match in a more restricted portion of the

TCP packet. Running the malware in a debugger also allowed the analyst to inspect a

network packet capture. The information in the packet capture was used to write a

second signature.

The analysis also allowed the analyst to understand the behavior of the malware

from a non-signature based standpoint. This malware specimen infected several

production hosts and network logs were used to verify that FTP transfers occurred while

the attacker was “shelled” in to the infected systems. However, the reverse shell activity

was obfuscated as https traffic and was not noticed during the initial analysis of the

network logs. Once the reverse shell functionality was discovered, the reverse shell

sessions were found in the network logs.

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 26
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

10. References
Ashley (2010). Obfuscation used by an HTTP Bot. Retrieved September 25, 2010 from

security.utexas.edu Web site:

http://security.utexas.edu/consensus/20100925_ISO_Obfuscation.pdf

Beale, J & Caswell, B (2007). Snort Intrusion and Detection Toolkit. Burlington, Ma:

Syngress.

Chand, Mahesh (2000, July 26). Download a Web Page using InternetOpenURL API.

Retrieved August 24, 2010 from Net Heaven Web site:

http://www.dotnetheaven.com/Uploadfile/mahesh/DownloadwPgbyIntopenURLA

PI05232005065621AM/DownloadwPgbyIntopenURLAPI.aspx

Graham, Ian (1998 January 5) Introduction to HTML. Retrieved August 27, 2010 from

utoronto.ca Web site:

http://www.utoronto.ca/web/HTMLdocs/NewHTML/comments.html

Hammer, Richard (2006, May 25). Inside-Out Vulnerabilities, Reverse Shells. Retrieved

August 24, 2010, from SANS Institute Infosec Reading Room:

http://search.sans.org/search?q=cache:RGE-

pG3kE3sJ:www.sans.org/reading_room/whitepapers/covert/inside-out-

vulnerabilities-reverse-

shells_1663+reverse+shell&access=p&output=xml_no_dtd&ie=UTF-

8&client=SANS&site=SANS&proxystylesheet=SANS&oe=UTF-8

Hart, Johnson M. (2005). Windows System Programming Third Edition. Boston, Ma:

Pearson Education, Inc.

Northcutt, S & Novak, J (2001). Network Intrusion Detection An Analyst’s Handbook.

New Riders Publishing.

pascallapalme (2010 April 6). Speech bubble. Retrieved August 20, 2010 from Open

Clip Art Library Web site: http://www.openclipart.org/detail/38593

Roesch, Martin (2010 August 27). Writing Snort Rules. Retrieved August 27, 2010,

from Packet Storm Web site:

http://packetstormsecurity.nl/papers/IDS/snort_rules.htm

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 27
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

Scott, C, Wolfe, P, & Hayes, B (2004). Snort for Dummies. Hoboken: Wiley Publishing

Inc.

Zeltser, L (2009a). Reverse-Engineering Malware: Additional Tools and Techniques.

Bethesda, Md: The SANS Institute.

Zeltser, L (2009b). Reverse-Engineering Malware: The Essentials of Malware Analysis.

Bethesda, Md: The SANS Institute.

	
	
	
	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 28
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

11. Appendix 1 (Contents of web.txt)
	
<!-‐-‐2upczxAXhr0	 -‐-‐>	
Help	
Help	 	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	
Help	

	

© 2010 The SANS Institute As part of the Information Security Reading Room Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Analysis of a Simple HTTP Bot	 29
	

Daryl	 Ashley,	 ashley@infosec.utexas.edu	 	 	

12. Appendix 2: Perl Script to Decode C&C Commands
	
#!/usr/bin/perl

my $dict =
"ABCFGHIJdefghijkKLMNOPVxyz01234WXYZabclmQRSTDEUnopqrstuvw56789+=";
my $buf = "2upczxAX";
my $out;
my ($i, $x, $y, $d, $tmp);

$y = 0;
$d = 0;
$out = "";

for ($i = 0; $i < length($buf); $i++) {
 my $c = substr($buf, $i, 1);
 $x = char_to_index($c, $dict);
 $y = $y << 6;
 $y = $y + $x;

 $d += 6;
 $d %= 8;
 if ($d != 6) {
 $tmp = $y;
 $tmp = $tmp >> $d;
 $tmp = $tmp & 127;
 $out = $out . chr($tmp);
 }
}

printf("Output: [%s]\n", $out);
exit 0;

sub char_to_index ()
{
 my $c = $_[0];
 my $str = $_[1];
 my $i;

 for ($i = 0; $i < length($str); $i++) {
 my $c2 = substr($str, $i, 1);
 if ($c eq $c2) {
 return $i;
 }
 }
 return 0;
}

Last Updated: February 17th, 2019

Upcoming SANS Training
Click here to view a list of all SANS Courses

SANS New York Metro Winter 2019 Jersey City, NJUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Scottsdale 2019 Scottsdale, AZUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Secure Japan 2019 Tokyo, JP Feb 18, 2019 - Mar 02, 2019 Live Event

SANS Zurich February 2019 Zurich, CH Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Riyadh February 2019 Riyadh, SA Feb 23, 2019 - Feb 28, 2019 Live Event

SANS Reno Tahoe 2019 Reno, NVUS Feb 25, 2019 - Mar 02, 2019 Live Event

SANS Brussels February 2019 Brussels, BE Feb 25, 2019 - Mar 02, 2019 Live Event

Open-Source Intelligence Summit & Training 2019 Alexandria, VAUS Feb 25, 2019 - Mar 03, 2019 Live Event

SANS Baltimore Spring 2019 Baltimore, MDUS Mar 02, 2019 - Mar 09, 2019 Live Event

SANS Training at RSA Conference 2019 San Francisco, CAUS Mar 03, 2019 - Mar 04, 2019 Live Event

SANS Secure India 2019 Bangalore, IN Mar 04, 2019 - Mar 09, 2019 Live Event

SANS St. Louis 2019 St. Louis, MOUS Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Secure Singapore 2019 Singapore, SG Mar 11, 2019 - Mar 23, 2019 Live Event

SANS San Francisco Spring 2019 San Francisco, CAUS Mar 11, 2019 - Mar 16, 2019 Live Event

SANS London March 2019 London, GB Mar 11, 2019 - Mar 16, 2019 Live Event

SANS Secure Canberra 2019 Canberra, AU Mar 18, 2019 - Mar 29, 2019 Live Event

SANS Norfolk 2019 Norfolk, VAUS Mar 18, 2019 - Mar 23, 2019 Live Event

ICS Security Summit & Training 2019 Orlando, FLUS Mar 18, 2019 - Mar 25, 2019 Live Event

SANS Munich March 2019 Munich, DE Mar 18, 2019 - Mar 23, 2019 Live Event

SANS SEC504 Paris March 2019 (in French) Paris, FR Mar 18, 2019 - Mar 23, 2019 Live Event

SANS Jeddah March 2019 Jeddah, SA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS Doha March 2019 Doha, QA Mar 23, 2019 - Mar 28, 2019 Live Event

SANS SEC560 Paris March 2019 (in French) Paris, FR Mar 25, 2019 - Mar 30, 2019 Live Event

SANS Madrid March 2019 Madrid, ES Mar 25, 2019 - Mar 30, 2019 Live Event

SANS 2019 Orlando, FLUS Apr 01, 2019 - Apr 08, 2019 Live Event

SANS Cyber Security Middle East Summit Abu Dhabi, AE Apr 04, 2019 - Apr 11, 2019 Live Event

SANS London April 2019 London, GB Apr 08, 2019 - Apr 13, 2019 Live Event

Blue Team Summit & Training 2019 Louisville, KYUS Apr 11, 2019 - Apr 18, 2019 Live Event

SANS Riyadh April 2019 Riyadh, SA Apr 13, 2019 - Apr 18, 2019 Live Event

SANS Boston Spring 2019 Boston, MAUS Apr 14, 2019 - Apr 19, 2019 Live Event

SANS Seattle Spring 2019 Seattle, WAUS Apr 14, 2019 - Apr 19, 2019 Live Event

FOR498 Battlefield Forensics Beta 1 Arlington, VAUS Apr 15, 2019 - Apr 20, 2019 Live Event

SANS Dallas 2019 OnlineTXUS Feb 18, 2019 - Feb 23, 2019 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Analysis_of_a_Simple_HTTP_Bot+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=54415&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54415&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_New_York_Metro_Winter_2019
http://www.sans.org/link.php?id=54420&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54420&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Scottsdale_2019
http://www.sans.org/link.php?id=54425&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54425&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Japan_2019
http://www.sans.org/link.php?id=54935&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=54935&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Zurich_February_2019
http://www.sans.org/link.php?id=55065&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=55065&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Riyadh_February_2019
http://www.sans.org/link.php?id=54430&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54430&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Reno_Tahoe_2019
http://www.sans.org/link.php?id=54960&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54960&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Brussels_February_2019
http://www.sans.org/link.php?id=54490&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54490&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=Open-Source_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54435&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=54435&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Baltimore_Spring_2019
http://www.sans.org/link.php?id=56970&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=56970&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Training_at_RSA_Conference_2019
http://www.sans.org/link.php?id=54440&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=54440&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_India_2019
http://www.sans.org/link.php?id=54455&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54455&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_St_Louis_2019
http://www.sans.org/link.php?id=54450&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54450&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Singapore_2019
http://www.sans.org/link.php?id=54445&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=54445&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_San_Francisco_Spring_2019
http://www.sans.org/link.php?id=55020&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=55020&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_London_March_2019
http://www.sans.org/link.php?id=54465&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54465&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Secure_Canberra_2019
http://www.sans.org/link.php?id=54460&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=54460&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Norfolk_2019
http://www.sans.org/link.php?id=54495&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=54495&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=ICS_Security_Summit_Training_2019
http://www.sans.org/link.php?id=55075&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=55075&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Munich_March_2019
http://www.sans.org/link.php?id=57475&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=57475&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_SEC504_Paris_March_2019_in_French
http://www.sans.org/link.php?id=56030&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=56030&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Jeddah_March_2019
http://www.sans.org/link.php?id=55255&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=55255&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Doha_March_2019
http://www.sans.org/link.php?id=57540&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_SEC560_Paris_March_2019_in_French
http://www.sans.org/link.php?id=57540&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_SEC560_Paris_March_2019_in_French
http://www.sans.org/link.php?id=55725&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Madrid_March_2019
http://www.sans.org/link.php?id=55725&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Madrid_March_2019
http://www.sans.org/link.php?id=54470&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_2019
http://www.sans.org/link.php?id=54470&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_2019
http://www.sans.org/link.php?id=55945&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Cyber_Security_Middle_East_Summit
http://www.sans.org/link.php?id=55945&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Cyber_Security_Middle_East_Summit
http://www.sans.org/link.php?id=56035&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_London_April_2019
http://www.sans.org/link.php?id=56035&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_London_April_2019
http://www.sans.org/link.php?id=55355&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=Blue_Team_Summit_Training_2019
http://www.sans.org/link.php?id=55355&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=Blue_Team_Summit_Training_2019
http://www.sans.org/link.php?id=56040&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Riyadh_April_2019
http://www.sans.org/link.php?id=56040&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Riyadh_April_2019
http://www.sans.org/link.php?id=55735&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Boston_Spring_2019
http://www.sans.org/link.php?id=55735&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Boston_Spring_2019
http://www.sans.org/link.php?id=55740&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Seattle_Spring_2019
http://www.sans.org/link.php?id=55740&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Seattle_Spring_2019
http://www.sans.org/link.php?id=58405&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=FOR498_Battlefield_Forensics_Beta_1
http://www.sans.org/link.php?id=58405&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=FOR498_Battlefield_Forensics_Beta_1
http://www.sans.org/link.php?id=54410&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=54410&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_Dallas_2019
http://www.sans.org/link.php?id=1032&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=Analysis_of_a_Simple_HTTP_Bot&rret=SANS_OnDemand

